Files
crypto/core/curves/native/k256/fp/fp.go

208 lines
5.7 KiB
Go

//
// Copyright Coinbase, Inc. All Rights Reserved.
//
// SPDX-License-Identifier: Apache-2.0
//
package fp
import (
"math/big"
"sync"
"github.com/sonr-io/crypto/core/curves/native"
)
var (
k256FpInitonce sync.Once
k256FpParams native.FieldParams
)
func K256FpNew() *native.Field {
return &native.Field{
Value: [native.FieldLimbs]uint64{},
Params: getK256FpParams(),
Arithmetic: k256FpArithmetic{},
}
}
func k256FpParamsInit() {
k256FpParams = native.FieldParams{
R: [native.FieldLimbs]uint64{
0x00000001000003d1,
0x0000000000000000,
0x0000000000000000,
0x0000000000000000,
},
R2: [native.FieldLimbs]uint64{
0x000007a2000e90a1,
0x0000000000000001,
0x0000000000000000,
0x0000000000000000,
},
R3: [native.FieldLimbs]uint64{
0x002bb1e33795f671,
0x0000000100000b73,
0x0000000000000000,
0x0000000000000000,
},
Modulus: [native.FieldLimbs]uint64{
0xfffffffefffffc2f,
0xffffffffffffffff,
0xffffffffffffffff,
0xffffffffffffffff,
},
BiModulus: new(big.Int).SetBytes([]byte{
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f,
}),
}
}
func getK256FpParams() *native.FieldParams {
k256FpInitonce.Do(k256FpParamsInit)
return &k256FpParams
}
// k256FpArithmetic is a struct with all the methods needed for working
// in mod p
type k256FpArithmetic struct{}
// ToMontgomery converts this field to montgomery form
func (f k256FpArithmetic) ToMontgomery(out, arg *[native.FieldLimbs]uint64) {
ToMontgomery((*MontgomeryDomainFieldElement)(out), (*NonMontgomeryDomainFieldElement)(arg))
}
// FromMontgomery converts this field from montgomery form
func (f k256FpArithmetic) FromMontgomery(out, arg *[native.FieldLimbs]uint64) {
FromMontgomery((*NonMontgomeryDomainFieldElement)(out), (*MontgomeryDomainFieldElement)(arg))
}
// Neg performs modular negation
func (f k256FpArithmetic) Neg(out, arg *[native.FieldLimbs]uint64) {
Opp((*MontgomeryDomainFieldElement)(out), (*MontgomeryDomainFieldElement)(arg))
}
// Square performs modular square
func (f k256FpArithmetic) Square(out, arg *[native.FieldLimbs]uint64) {
Square((*MontgomeryDomainFieldElement)(out), (*MontgomeryDomainFieldElement)(arg))
}
// Mul performs modular multiplication
func (f k256FpArithmetic) Mul(out, arg1, arg2 *[native.FieldLimbs]uint64) {
Mul(
(*MontgomeryDomainFieldElement)(out),
(*MontgomeryDomainFieldElement)(arg1),
(*MontgomeryDomainFieldElement)(arg2),
)
}
// Add performs modular addition
func (f k256FpArithmetic) Add(out, arg1, arg2 *[native.FieldLimbs]uint64) {
Add(
(*MontgomeryDomainFieldElement)(out),
(*MontgomeryDomainFieldElement)(arg1),
(*MontgomeryDomainFieldElement)(arg2),
)
}
// Sub performs modular subtraction
func (f k256FpArithmetic) Sub(out, arg1, arg2 *[native.FieldLimbs]uint64) {
Sub(
(*MontgomeryDomainFieldElement)(out),
(*MontgomeryDomainFieldElement)(arg1),
(*MontgomeryDomainFieldElement)(arg2),
)
}
// Sqrt performs modular square root
func (f k256FpArithmetic) Sqrt(wasSquare *int, out, arg *[native.FieldLimbs]uint64) {
// p is congruent to 3 mod 4 we can compute
// sqrt using elem^(p+1)/4 mod p
// 0x3fffffffffffffffffffffffffffffffffffffffffffffffffffffffbfffff0c
var s, t [native.FieldLimbs]uint64
params := getK256FpParams()
native.Pow(&s, arg, &[native.FieldLimbs]uint64{
0xffffffffbfffff0c,
0xffffffffffffffff,
0xffffffffffffffff,
0x3fffffffffffffff,
}, params, f)
f.Square(&t, &s)
tv1 := &native.Field{Value: t, Params: params, Arithmetic: f}
tv2 := &native.Field{Value: *arg, Params: params, Arithmetic: f}
*wasSquare = tv1.Equal(tv2)
f.Selectznz(out, out, &s, *wasSquare)
}
// Invert performs modular inverse
func (f k256FpArithmetic) Invert(wasInverted *int, out, arg *[native.FieldLimbs]uint64) {
// The binary representation of (p - 2) has 5 groups of 1s, with lengths in
// { 1, 2, 22, 223 }. Use an addition chain to calculate 2^n - 1 for each group:
// [1], [2], 3, 6, 9, 11, [22], 44, 88, 176, 220, [223]
var s, x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223 [native.FieldLimbs]uint64
native.Pow2k(&x2, arg, 1, f)
f.Mul(&x2, &x2, arg)
native.Pow2k(&x3, &x2, 1, f)
f.Mul(&x3, &x3, arg)
native.Pow2k(&x6, &x3, 3, f)
f.Mul(&x6, &x6, &x3)
native.Pow2k(&x9, &x6, 3, f)
f.Mul(&x9, &x9, &x3)
native.Pow2k(&x11, &x9, 2, f)
f.Mul(&x11, &x11, &x2)
native.Pow2k(&x22, &x11, 11, f)
f.Mul(&x22, &x22, &x11)
native.Pow2k(&x44, &x22, 22, f)
f.Mul(&x44, &x44, &x22)
native.Pow2k(&x88, &x44, 44, f)
f.Mul(&x88, &x88, &x44)
native.Pow2k(&x176, &x88, 88, f)
f.Mul(&x176, &x176, &x88)
native.Pow2k(&x220, &x176, 44, f)
f.Mul(&x220, &x220, &x44)
native.Pow2k(&x223, &x220, 3, f)
f.Mul(&x223, &x223, &x3)
// Use sliding window over the group
native.Pow2k(&s, &x223, 23, f)
f.Mul(&s, &s, &x22)
native.Pow2k(&s, &s, 5, f)
f.Mul(&s, &s, arg)
native.Pow2k(&s, &s, 3, f)
f.Mul(&s, &s, &x2)
native.Pow2k(&s, &s, 2, f)
f.Mul(&s, &s, arg)
tv := &native.Field{Value: *arg, Params: getK256FpParams(), Arithmetic: f}
*wasInverted = tv.IsNonZero()
f.Selectznz(out, out, &s, *wasInverted)
}
// FromBytes converts a little endian byte array into a field element
func (f k256FpArithmetic) FromBytes(out *[native.FieldLimbs]uint64, arg *[native.FieldBytes]byte) {
FromBytes(out, arg)
}
// ToBytes converts a field element to a little endian byte array
func (f k256FpArithmetic) ToBytes(out *[native.FieldBytes]byte, arg *[native.FieldLimbs]uint64) {
ToBytes(out, arg)
}
// Selectznz performs conditional select.
// selects arg1 if choice == 0 and arg2 if choice == 1
func (f k256FpArithmetic) Selectznz(out, arg1, arg2 *[native.FieldLimbs]uint64, choice int) {
Selectznz(out, uint1(choice), arg1, arg2)
}