mirror of
https://github.com/sonr-io/crypto.git
synced 2026-01-11 20:08:57 +00:00
476 lines
12 KiB
Go
476 lines
12 KiB
Go
package k256
|
|
|
|
import (
|
|
"sync"
|
|
|
|
"github.com/sonr-io/crypto/core/curves/native"
|
|
"github.com/sonr-io/crypto/core/curves/native/k256/fp"
|
|
"github.com/sonr-io/crypto/internal"
|
|
)
|
|
|
|
var (
|
|
k256PointInitonce sync.Once
|
|
k256PointParams native.EllipticPointParams
|
|
k256PointSswuInitOnce sync.Once
|
|
k256PointSswuParams native.SswuParams
|
|
k256PointIsogenyInitOnce sync.Once
|
|
k256PointIsogenyParams native.IsogenyParams
|
|
)
|
|
|
|
func K256PointNew() *native.EllipticPoint {
|
|
return &native.EllipticPoint{
|
|
X: fp.K256FpNew(),
|
|
Y: fp.K256FpNew(),
|
|
Z: fp.K256FpNew(),
|
|
Params: getK256PointParams(),
|
|
Arithmetic: &k256PointArithmetic{},
|
|
}
|
|
}
|
|
|
|
func k256PointParamsInit() {
|
|
k256PointParams = native.EllipticPointParams{
|
|
A: fp.K256FpNew(),
|
|
B: fp.K256FpNew().SetUint64(7),
|
|
Gx: fp.K256FpNew().SetLimbs(&[native.FieldLimbs]uint64{
|
|
0x59f2815b16f81798,
|
|
0x029bfcdb2dce28d9,
|
|
0x55a06295ce870b07,
|
|
0x79be667ef9dcbbac,
|
|
}),
|
|
Gy: fp.K256FpNew().SetLimbs(&[native.FieldLimbs]uint64{
|
|
0x9c47d08ffb10d4b8,
|
|
0xfd17b448a6855419,
|
|
0x5da4fbfc0e1108a8,
|
|
0x483ada7726a3c465,
|
|
}),
|
|
BitSize: 256,
|
|
Name: "secp256k1",
|
|
}
|
|
}
|
|
|
|
func getK256PointParams() *native.EllipticPointParams {
|
|
k256PointInitonce.Do(k256PointParamsInit)
|
|
return &k256PointParams
|
|
}
|
|
|
|
func getK256PointSswuParams() *native.SswuParams {
|
|
k256PointSswuInitOnce.Do(k256PointSswuParamsInit)
|
|
return &k256PointSswuParams
|
|
}
|
|
|
|
func k256PointSswuParamsInit() {
|
|
// Taken from https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-11#section-8.7
|
|
//params := btcec.S256().Params()
|
|
//
|
|
//// c1 = (q - 3) / 4
|
|
//c1 := new(big.Int).Set(params.P)
|
|
//c1.Sub(c1, big.NewInt(3))
|
|
//c1.Rsh(c1, 2)
|
|
//
|
|
//a, _ := new(big.Int).SetString("3f8731abdd661adca08a5558f0f5d272e953d363cb6f0e5d405447c01a444533", 16)
|
|
//b := big.NewInt(1771)
|
|
//z := big.NewInt(-11)
|
|
//z.Mod(z, params.P)
|
|
//// sqrt(-z^3)
|
|
//zTmp := new(big.Int).Exp(z, big.NewInt(3), nil)
|
|
//zTmp = zTmp.Neg(zTmp)
|
|
//zTmp.Mod(zTmp, params.P)
|
|
//c2 := new(big.Int).ModSqrt(zTmp, params.P)
|
|
//
|
|
//var tBytes [32]byte
|
|
//c1.FillBytes(tBytes[:])
|
|
//newC1 := [native.FieldLimbs]uint64{
|
|
// binary.BigEndian.Uint64(tBytes[24:32]),
|
|
// binary.BigEndian.Uint64(tBytes[16:24]),
|
|
// binary.BigEndian.Uint64(tBytes[8:16]),
|
|
// binary.BigEndian.Uint64(tBytes[:8]),
|
|
//}
|
|
//fp.K256FpNew().Arithmetic.ToMontgomery(&newC1, &newC1)
|
|
//c2.FillBytes(tBytes[:])
|
|
//newC2 := [native.FieldLimbs]uint64{
|
|
// binary.BigEndian.Uint64(tBytes[24:32]),
|
|
// binary.BigEndian.Uint64(tBytes[16:24]),
|
|
// binary.BigEndian.Uint64(tBytes[8:16]),
|
|
// binary.BigEndian.Uint64(tBytes[:8]),
|
|
//}
|
|
//fp.K256FpNew().Arithmetic.ToMontgomery(&newC2, &newC2)
|
|
//a.FillBytes(tBytes[:])
|
|
//newA := [native.FieldLimbs]uint64{
|
|
// binary.BigEndian.Uint64(tBytes[24:32]),
|
|
// binary.BigEndian.Uint64(tBytes[16:24]),
|
|
// binary.BigEndian.Uint64(tBytes[8:16]),
|
|
// binary.BigEndian.Uint64(tBytes[:8]),
|
|
//}
|
|
//fp.K256FpNew().Arithmetic.ToMontgomery(&newA, &newA)
|
|
//b.FillBytes(tBytes[:])
|
|
//newB := [native.FieldLimbs]uint64{
|
|
// binary.BigEndian.Uint64(tBytes[24:32]),
|
|
// binary.BigEndian.Uint64(tBytes[16:24]),
|
|
// binary.BigEndian.Uint64(tBytes[8:16]),
|
|
// binary.BigEndian.Uint64(tBytes[:8]),
|
|
//}
|
|
//fp.K256FpNew().Arithmetic.ToMontgomery(&newB, &newB)
|
|
//z.FillBytes(tBytes[:])
|
|
//newZ := [native.FieldLimbs]uint64{
|
|
// binary.BigEndian.Uint64(tBytes[24:32]),
|
|
// binary.BigEndian.Uint64(tBytes[16:24]),
|
|
// binary.BigEndian.Uint64(tBytes[8:16]),
|
|
// binary.BigEndian.Uint64(tBytes[:8]),
|
|
//}
|
|
//fp.K256FpNew().Arithmetic.ToMontgomery(&newZ, &newZ)
|
|
|
|
k256PointSswuParams = native.SswuParams{
|
|
// (q -3) // 4
|
|
C1: [native.FieldLimbs]uint64{
|
|
0xffffffffbfffff0b,
|
|
0xffffffffffffffff,
|
|
0xffffffffffffffff,
|
|
0x3fffffffffffffff,
|
|
},
|
|
// sqrt(-z^3)
|
|
C2: [native.FieldLimbs]uint64{
|
|
0x5b57ba53a30d1520,
|
|
0x908f7cef34a762eb,
|
|
0x190b0ffe068460c8,
|
|
0x98a9828e8f00ff62,
|
|
},
|
|
// 0x3f8731abdd661adca08a5558f0f5d272e953d363cb6f0e5d405447c01a444533
|
|
A: [native.FieldLimbs]uint64{
|
|
0xdb714ce7b18444a1,
|
|
0x4458ce38a32a19a2,
|
|
0xa0e58ae2837bfbf0,
|
|
0x505aabc49336d959,
|
|
},
|
|
// 1771
|
|
B: [native.FieldLimbs]uint64{
|
|
0x000006eb001a66db,
|
|
0x0000000000000000,
|
|
0x0000000000000000,
|
|
0x0000000000000000,
|
|
},
|
|
// -11
|
|
Z: [native.FieldLimbs]uint64{
|
|
0xfffffff3ffffd234,
|
|
0xffffffffffffffff,
|
|
0xffffffffffffffff,
|
|
0xffffffffffffffff,
|
|
},
|
|
}
|
|
}
|
|
|
|
func k256PointIsogenyInit() {
|
|
k256PointIsogenyParams = native.IsogenyParams{
|
|
XNum: [][native.FieldLimbs]uint64{
|
|
{
|
|
0x0000003b1c72a8b4,
|
|
0x0000000000000000,
|
|
0x0000000000000000,
|
|
0x0000000000000000,
|
|
},
|
|
{
|
|
0xd5bd51a17b2edf46,
|
|
0x2cc06f7c86b86bcd,
|
|
0x50b37e74f3294a00,
|
|
0xeb32314a9da73679,
|
|
},
|
|
{
|
|
0x48c18b1b0d2191bd,
|
|
0x5a3f74c29bfccce3,
|
|
0xbe55a02e5e8bd357,
|
|
0x09bf218d11fff905,
|
|
},
|
|
{
|
|
0x000000001c71c789,
|
|
0x0000000000000000,
|
|
0x0000000000000000,
|
|
0x0000000000000000,
|
|
},
|
|
},
|
|
XDen: [][native.FieldLimbs]uint64{
|
|
{
|
|
0x8af79c1ffdf1e7fa,
|
|
0xb84bc22235735eb5,
|
|
0x82ee5655a55ace04,
|
|
0xce4b32dea0a2becb,
|
|
},
|
|
{
|
|
0x8ecde3f3762e1fa5,
|
|
0x2c3b1ad77be333fd,
|
|
0xb102a1a152ea6e12,
|
|
0x57b82df5a1ffc133,
|
|
},
|
|
{
|
|
0x00000001000003d1,
|
|
0x0000000000000000,
|
|
0x0000000000000000,
|
|
0x0000000000000000,
|
|
},
|
|
},
|
|
YNum: [][native.FieldLimbs]uint64{
|
|
{
|
|
0xffffffce425e12c3,
|
|
0xffffffffffffffff,
|
|
0xffffffffffffffff,
|
|
0xffffffffffffffff,
|
|
},
|
|
{
|
|
0xba60d5fd6e56922e,
|
|
0x4ec198c898a435f2,
|
|
0x27e77a577b9764ab,
|
|
0xb3b80a1197651d12,
|
|
},
|
|
{
|
|
0xa460c58d0690c6f6,
|
|
0xad1fba614dfe6671,
|
|
0xdf2ad0172f45e9ab,
|
|
0x84df90c688fffc82,
|
|
},
|
|
{
|
|
0x00000000097b4283,
|
|
0x0000000000000000,
|
|
0x0000000000000000,
|
|
0x0000000000000000,
|
|
},
|
|
},
|
|
YDen: [][native.FieldLimbs]uint64{
|
|
{
|
|
0xfffffd0afff4b6fb,
|
|
0xffffffffffffffff,
|
|
0xffffffffffffffff,
|
|
0xffffffffffffffff,
|
|
},
|
|
{
|
|
0xa0e6d461f9d5bf90,
|
|
0x28e34666a05a1c20,
|
|
0x88cb0300f0106a0e,
|
|
0x6ae1989be1e83c62,
|
|
},
|
|
{
|
|
0x5634d5edb1453160,
|
|
0x4258a84339d4cdfc,
|
|
0x8983f271fc5fa51b,
|
|
0x039444f072ffa1cd,
|
|
},
|
|
{
|
|
0x00000001000003d1,
|
|
0x0000000000000000,
|
|
0x0000000000000000,
|
|
0x0000000000000000,
|
|
},
|
|
},
|
|
}
|
|
}
|
|
|
|
func getK256PointIsogenyParams() *native.IsogenyParams {
|
|
k256PointIsogenyInitOnce.Do(k256PointIsogenyInit)
|
|
return &k256PointIsogenyParams
|
|
}
|
|
|
|
type k256PointArithmetic struct{}
|
|
|
|
func (k k256PointArithmetic) Hash(
|
|
out *native.EllipticPoint,
|
|
hash *native.EllipticPointHasher,
|
|
msg, dst []byte,
|
|
) error {
|
|
var u []byte
|
|
sswuParams := getK256PointSswuParams()
|
|
isoParams := getK256PointIsogenyParams()
|
|
|
|
switch hash.Type() {
|
|
case native.XMD:
|
|
u = native.ExpandMsgXmd(hash, msg, dst, 96)
|
|
case native.XOF:
|
|
u = native.ExpandMsgXof(hash, msg, dst, 96)
|
|
}
|
|
var buf [64]byte
|
|
copy(buf[:48], internal.ReverseScalarBytes(u[:48]))
|
|
u0 := fp.K256FpNew().SetBytesWide(&buf)
|
|
copy(buf[:48], internal.ReverseScalarBytes(u[48:]))
|
|
u1 := fp.K256FpNew().SetBytesWide(&buf)
|
|
|
|
r0x, r0y := sswuParams.Osswu3mod4(u0)
|
|
r1x, r1y := sswuParams.Osswu3mod4(u1)
|
|
q0x, q0y := isoParams.Map(r0x, r0y)
|
|
q1x, q1y := isoParams.Map(r1x, r1y)
|
|
out.X = q0x
|
|
out.Y = q0y
|
|
out.Z.SetOne()
|
|
tv := &native.EllipticPoint{
|
|
X: q1x,
|
|
Y: q1y,
|
|
Z: fp.K256FpNew().SetOne(),
|
|
}
|
|
k.Add(out, out, tv)
|
|
return nil
|
|
}
|
|
|
|
func (k k256PointArithmetic) Double(out, arg *native.EllipticPoint) {
|
|
// Addition formula from Renes-Costello-Batina 2015
|
|
// (https://eprint.iacr.org/2015/1060 Algorithm 9)
|
|
var yy, zz, xy2, bzz, bzz3, bzz9 [native.FieldLimbs]uint64
|
|
var yyMBzz9, yyPBzz3, yyzz, yyzz8, t [native.FieldLimbs]uint64
|
|
var x, y, z [native.FieldLimbs]uint64
|
|
f := arg.X.Arithmetic
|
|
|
|
f.Square(&yy, &arg.Y.Value)
|
|
f.Square(&zz, &arg.Z.Value)
|
|
f.Mul(&xy2, &arg.X.Value, &arg.Y.Value)
|
|
f.Add(&xy2, &xy2, &xy2)
|
|
f.Mul(&bzz, &zz, &arg.Params.B.Value)
|
|
f.Add(&bzz3, &bzz, &bzz)
|
|
f.Add(&bzz3, &bzz3, &bzz)
|
|
f.Add(&bzz9, &bzz3, &bzz3)
|
|
f.Add(&bzz9, &bzz9, &bzz3)
|
|
f.Neg(&yyMBzz9, &bzz9)
|
|
f.Add(&yyMBzz9, &yyMBzz9, &yy)
|
|
f.Add(&yyPBzz3, &yy, &bzz3)
|
|
f.Mul(&yyzz, &yy, &zz)
|
|
f.Add(&yyzz8, &yyzz, &yyzz)
|
|
f.Add(&yyzz8, &yyzz8, &yyzz8)
|
|
f.Add(&yyzz8, &yyzz8, &yyzz8)
|
|
f.Add(&t, &yyzz8, &yyzz8)
|
|
f.Add(&t, &t, &yyzz8)
|
|
f.Mul(&t, &t, &arg.Params.B.Value)
|
|
|
|
f.Mul(&x, &xy2, &yyMBzz9)
|
|
|
|
f.Mul(&y, &yyMBzz9, &yyPBzz3)
|
|
f.Add(&y, &y, &t)
|
|
|
|
f.Mul(&z, &yy, &arg.Y.Value)
|
|
f.Mul(&z, &z, &arg.Z.Value)
|
|
f.Add(&z, &z, &z)
|
|
f.Add(&z, &z, &z)
|
|
f.Add(&z, &z, &z)
|
|
|
|
out.X.Value = x
|
|
out.Y.Value = y
|
|
out.Z.Value = z
|
|
}
|
|
|
|
func (k k256PointArithmetic) Add(out, arg1, arg2 *native.EllipticPoint) {
|
|
// Addition formula from Renes-Costello-Batina 2015
|
|
// (https://eprint.iacr.org/2015/1060 Algorithm 7).
|
|
var xx, yy, zz, nXxYy, nYyZz, nXxZz [native.FieldLimbs]uint64
|
|
var tv1, tv2, xyPairs, yzPairs, xzPairs [native.FieldLimbs]uint64
|
|
var bzz, bzz3, yyMBzz3, yyPBzz3, byz [native.FieldLimbs]uint64
|
|
var byz3, xx3, bxx9, x, y, z [native.FieldLimbs]uint64
|
|
f := arg1.X.Arithmetic
|
|
|
|
f.Mul(&xx, &arg1.X.Value, &arg2.X.Value)
|
|
f.Mul(&yy, &arg1.Y.Value, &arg2.Y.Value)
|
|
f.Mul(&zz, &arg1.Z.Value, &arg2.Z.Value)
|
|
|
|
f.Add(&nXxYy, &xx, &yy)
|
|
f.Neg(&nXxYy, &nXxYy)
|
|
|
|
f.Add(&nYyZz, &yy, &zz)
|
|
f.Neg(&nYyZz, &nYyZz)
|
|
|
|
f.Add(&nXxZz, &xx, &zz)
|
|
f.Neg(&nXxZz, &nXxZz)
|
|
|
|
f.Add(&tv1, &arg1.X.Value, &arg1.Y.Value)
|
|
f.Add(&tv2, &arg2.X.Value, &arg2.Y.Value)
|
|
f.Mul(&xyPairs, &tv1, &tv2)
|
|
f.Add(&xyPairs, &xyPairs, &nXxYy)
|
|
|
|
f.Add(&tv1, &arg1.Y.Value, &arg1.Z.Value)
|
|
f.Add(&tv2, &arg2.Y.Value, &arg2.Z.Value)
|
|
f.Mul(&yzPairs, &tv1, &tv2)
|
|
f.Add(&yzPairs, &yzPairs, &nYyZz)
|
|
|
|
f.Add(&tv1, &arg1.X.Value, &arg1.Z.Value)
|
|
f.Add(&tv2, &arg2.X.Value, &arg2.Z.Value)
|
|
f.Mul(&xzPairs, &tv1, &tv2)
|
|
f.Add(&xzPairs, &xzPairs, &nXxZz)
|
|
|
|
f.Mul(&bzz, &zz, &arg1.Params.B.Value)
|
|
f.Add(&bzz3, &bzz, &bzz)
|
|
f.Add(&bzz3, &bzz3, &bzz)
|
|
|
|
f.Neg(&yyMBzz3, &bzz3)
|
|
f.Add(&yyMBzz3, &yyMBzz3, &yy)
|
|
|
|
f.Add(&yyPBzz3, &yy, &bzz3)
|
|
|
|
f.Mul(&byz, &yzPairs, &arg1.Params.B.Value)
|
|
f.Add(&byz3, &byz, &byz)
|
|
f.Add(&byz3, &byz3, &byz)
|
|
|
|
f.Add(&xx3, &xx, &xx)
|
|
f.Add(&xx3, &xx3, &xx)
|
|
|
|
f.Add(&bxx9, &xx3, &xx3)
|
|
f.Add(&bxx9, &bxx9, &xx3)
|
|
f.Mul(&bxx9, &bxx9, &arg1.Params.B.Value)
|
|
|
|
f.Mul(&tv1, &xyPairs, &yyMBzz3)
|
|
f.Mul(&tv2, &byz3, &xzPairs)
|
|
f.Neg(&tv2, &tv2)
|
|
f.Add(&x, &tv1, &tv2)
|
|
|
|
f.Mul(&tv1, &yyPBzz3, &yyMBzz3)
|
|
f.Mul(&tv2, &bxx9, &xzPairs)
|
|
f.Add(&y, &tv1, &tv2)
|
|
|
|
f.Mul(&tv1, &yzPairs, &yyPBzz3)
|
|
f.Mul(&tv2, &xx3, &xyPairs)
|
|
f.Add(&z, &tv1, &tv2)
|
|
|
|
e1 := arg1.Z.IsZero()
|
|
e2 := arg2.Z.IsZero()
|
|
|
|
// If arg1 is identity set it to arg2
|
|
f.Selectznz(&z, &z, &arg2.Z.Value, e1)
|
|
f.Selectznz(&y, &y, &arg2.Y.Value, e1)
|
|
f.Selectznz(&x, &x, &arg2.X.Value, e1)
|
|
// If arg2 is identity set it to arg1
|
|
f.Selectznz(&z, &z, &arg1.Z.Value, e2)
|
|
f.Selectznz(&y, &y, &arg1.Y.Value, e2)
|
|
f.Selectznz(&x, &x, &arg1.X.Value, e2)
|
|
|
|
out.X.Value = x
|
|
out.Y.Value = y
|
|
out.Z.Value = z
|
|
}
|
|
|
|
func (k k256PointArithmetic) IsOnCurve(arg *native.EllipticPoint) bool {
|
|
affine := K256PointNew()
|
|
k.ToAffine(affine, arg)
|
|
lhs := fp.K256FpNew().Square(affine.Y)
|
|
rhs := fp.K256FpNew()
|
|
k.RhsEq(rhs, affine.X)
|
|
return lhs.Equal(rhs) == 1
|
|
}
|
|
|
|
func (k k256PointArithmetic) ToAffine(out, arg *native.EllipticPoint) {
|
|
var wasInverted int
|
|
var zero, x, y, z [native.FieldLimbs]uint64
|
|
f := arg.X.Arithmetic
|
|
|
|
f.Invert(&wasInverted, &z, &arg.Z.Value)
|
|
f.Mul(&x, &arg.X.Value, &z)
|
|
f.Mul(&y, &arg.Y.Value, &z)
|
|
|
|
out.Z.SetOne()
|
|
// If point at infinity this does nothing
|
|
f.Selectznz(&x, &zero, &x, wasInverted)
|
|
f.Selectznz(&y, &zero, &y, wasInverted)
|
|
f.Selectznz(&z, &zero, &out.Z.Value, wasInverted)
|
|
|
|
out.X.Value = x
|
|
out.Y.Value = y
|
|
out.Z.Value = z
|
|
out.Params = arg.Params
|
|
out.Arithmetic = arg.Arithmetic
|
|
}
|
|
|
|
func (k k256PointArithmetic) RhsEq(out, x *native.Field) {
|
|
// Elliptic curve equation for secp256k1 is: y^2 = x^3 + 7
|
|
out.Square(x)
|
|
out.Mul(out, x)
|
|
out.Add(out, getK256PointParams().B)
|
|
}
|