Files
crypto/core/curves/native/p256/fp/fp.go

207 lines
5.4 KiB
Go

//
// Copyright Coinbase, Inc. All Rights Reserved.
//
// SPDX-License-Identifier: Apache-2.0
//
package fp
import (
"math/big"
"sync"
"github.com/sonr-io/sonr/crypto/core/curves/native"
)
var (
p256FpInitonce sync.Once
p256FpParams native.FieldParams
)
func P256FpNew() *native.Field {
return &native.Field{
Value: [native.FieldLimbs]uint64{},
Params: getP256FpParams(),
Arithmetic: p256FpArithmetic{},
}
}
func p256FpParamsInit() {
// See FIPS 186-3, section D.2.3
p256FpParams = native.FieldParams{
R: [native.FieldLimbs]uint64{
0x0000000000000001,
0xffffffff00000000,
0xffffffffffffffff,
0x00000000fffffffe,
},
R2: [native.FieldLimbs]uint64{
0x0000000000000003,
0xfffffffbffffffff,
0xfffffffffffffffe,
0x00000004fffffffd,
},
R3: [native.FieldLimbs]uint64{
0xfffffffd0000000a,
0xffffffedfffffff7,
0x00000005fffffffc,
0x0000001800000001,
},
Modulus: [native.FieldLimbs]uint64{
0xffffffffffffffff,
0x00000000ffffffff,
0x0000000000000000,
0xffffffff00000001,
},
BiModulus: new(big.Int).SetBytes([]byte{
0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
}),
}
}
func getP256FpParams() *native.FieldParams {
p256FpInitonce.Do(p256FpParamsInit)
return &p256FpParams
}
// p256FpArithmetic is a struct with all the methods needed for working
// in mod q
type p256FpArithmetic struct{}
// ToMontgomery converts this field to montgomery form
func (f p256FpArithmetic) ToMontgomery(out, arg *[native.FieldLimbs]uint64) {
ToMontgomery((*MontgomeryDomainFieldElement)(out), (*NonMontgomeryDomainFieldElement)(arg))
}
// FromMontgomery converts this field from montgomery form
func (f p256FpArithmetic) FromMontgomery(out, arg *[native.FieldLimbs]uint64) {
FromMontgomery((*NonMontgomeryDomainFieldElement)(out), (*MontgomeryDomainFieldElement)(arg))
}
// Neg performs modular negation
func (f p256FpArithmetic) Neg(out, arg *[native.FieldLimbs]uint64) {
Opp((*MontgomeryDomainFieldElement)(out), (*MontgomeryDomainFieldElement)(arg))
}
// Square performs modular square
func (f p256FpArithmetic) Square(out, arg *[native.FieldLimbs]uint64) {
Square((*MontgomeryDomainFieldElement)(out), (*MontgomeryDomainFieldElement)(arg))
}
// Mul performs modular multiplication
func (f p256FpArithmetic) Mul(out, arg1, arg2 *[native.FieldLimbs]uint64) {
Mul(
(*MontgomeryDomainFieldElement)(out),
(*MontgomeryDomainFieldElement)(arg1),
(*MontgomeryDomainFieldElement)(arg2),
)
}
// Add performs modular addition
func (f p256FpArithmetic) Add(out, arg1, arg2 *[native.FieldLimbs]uint64) {
Add(
(*MontgomeryDomainFieldElement)(out),
(*MontgomeryDomainFieldElement)(arg1),
(*MontgomeryDomainFieldElement)(arg2),
)
}
// Sub performs modular subtraction
func (f p256FpArithmetic) Sub(out, arg1, arg2 *[native.FieldLimbs]uint64) {
Sub(
(*MontgomeryDomainFieldElement)(out),
(*MontgomeryDomainFieldElement)(arg1),
(*MontgomeryDomainFieldElement)(arg2),
)
}
// Sqrt performs modular square root
func (f p256FpArithmetic) Sqrt(wasSquare *int, out, arg *[native.FieldLimbs]uint64) {
// Use p = 3 mod 4 by Euler's criterion means
// arg^((p+1)/4 mod p
var t, c [native.FieldLimbs]uint64
c1 := [native.FieldLimbs]uint64{
0x0000_0000_0000_0000,
0x0000_0000_4000_0000,
0x4000_0000_0000_0000,
0x3fff_ffff_c000_0000,
}
native.Pow(&t, arg, &c1, getP256FpParams(), f)
Square((*MontgomeryDomainFieldElement)(&c), (*MontgomeryDomainFieldElement)(&t))
*wasSquare = (&native.Field{Value: c, Params: getP256FpParams(), Arithmetic: f}).Equal(
&native.Field{
Value: *arg, Params: getP256FpParams(), Arithmetic: f,
},
)
Selectznz(out, uint1(*wasSquare), out, &t)
}
// Invert performs modular inverse
func (f p256FpArithmetic) Invert(wasInverted *int, out, arg *[native.FieldLimbs]uint64) {
// Fermat's Little Theorem
// a ^ (p - 2) mod p
//
// The exponent pattern (from high to low) is:
// - 32 bits of value 1
// - 31 bits of value 0
// - 1 bit of value 1
// - 96 bits of value 0
// - 94 bits of value 1
// - 1 bit of value 0
// - 1 bit of value 1
// To speed up the square-and-multiply algorithm, precompute a^(2^31-1).
//
// Courtesy of Thomas Pornin
//
var t, r [native.FieldLimbs]uint64
copy(t[:], arg[:])
for i := 0; i < 30; i++ {
f.Square(&t, &t)
f.Mul(&t, &t, arg)
}
copy(r[:], t[:])
for i := 224; i >= 0; i-- {
f.Square(&r, &r)
switch i {
case 0:
fallthrough
case 2:
fallthrough
case 192:
fallthrough
case 224:
f.Mul(&r, &r, arg)
case 3:
fallthrough
case 34:
fallthrough
case 65:
f.Mul(&r, &r, &t)
}
}
*wasInverted = (&native.Field{
Value: *arg,
Params: getP256FpParams(),
Arithmetic: f,
}).IsNonZero()
Selectznz(out, uint1(*wasInverted), out, &r)
}
// FromBytes converts a little endian byte array into a field element
func (f p256FpArithmetic) FromBytes(out *[native.FieldLimbs]uint64, arg *[native.FieldBytes]byte) {
FromBytes(out, arg)
}
// ToBytes converts a field element to a little endian byte array
func (f p256FpArithmetic) ToBytes(out *[native.FieldBytes]byte, arg *[native.FieldLimbs]uint64) {
ToBytes(out, arg)
}
// Selectznz performs conditional select.
// selects arg1 if choice == 0 and arg2 if choice == 1
func (f p256FpArithmetic) Selectznz(out, arg1, arg2 *[native.FieldLimbs]uint64, choice int) {
Selectznz(out, uint1(choice), arg1, arg2)
}