Files
wiki/convex/semanticSearchQueries.ts
Wayne Sutton 5a8df46681 feat: Add semantic search with vector embeddings
Add vector-based semantic search to complement keyword search.
  Users can toggle between "Keyword" and "Semantic" modes in the
  search modal (Cmd+K, then Tab to switch).

  Semantic search:
  - Uses OpenAI text-embedding-ada-002 (1536 dimensions)
  - Finds content by meaning, not exact words
  - Shows similarity scores as percentages
  - ~300ms latency, ~$0.0001/query
  - Graceful fallback if OPENAI_API_KEY not set

  New files:
  - convex/embeddings.ts - Embedding generation actions
  - convex/embeddingsQueries.ts - Queries/mutations for embeddings
  - convex/semanticSearch.ts - Vector search action
  - convex/semanticSearchQueries.ts - Result hydration queries
  - content/pages/docs-search.md - Keyword search docs
  - content/pages/docs-semantic-search.md - Semantic search docs

  Changes:
  - convex/schema.ts: Add embedding field and by_embedding vectorIndex
  - SearchModal.tsx: Add mode toggle (TextAa/Brain icons)
  - sync-posts.ts: Generate embeddings after content sync
  - global.css: Search mode toggle styles

  Documentation updated:
  - changelog.md, TASK.md, files.md, about.md, home.md

  Configuration:
  npx convex env set OPENAI_API_KEY sk-your-key

  Generated with [Claude Code](https://claude.com/claude-code)

  Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>

  Status: Ready to commit. All semantic search files are staged. The TypeScript warnings are pre-existing (unused variables) and don't affect the build.
2026-01-05 18:30:48 -08:00

63 lines
1.5 KiB
TypeScript

import { v } from "convex/values";
import { internalQuery } from "./_generated/server";
// Internal query to fetch post details by IDs
export const fetchPostsByIds = internalQuery({
args: { ids: v.array(v.id("posts")) },
returns: v.array(
v.object({
_id: v.id("posts"),
slug: v.string(),
title: v.string(),
description: v.string(),
content: v.string(),
unlisted: v.optional(v.boolean()),
})
),
handler: async (ctx, args) => {
const results = [];
for (const id of args.ids) {
const doc = await ctx.db.get(id);
if (doc && doc.published && !doc.unlisted) {
results.push({
_id: doc._id,
slug: doc.slug,
title: doc.title,
description: doc.description,
content: doc.content,
unlisted: doc.unlisted,
});
}
}
return results;
},
});
// Internal query to fetch page details by IDs
export const fetchPagesByIds = internalQuery({
args: { ids: v.array(v.id("pages")) },
returns: v.array(
v.object({
_id: v.id("pages"),
slug: v.string(),
title: v.string(),
content: v.string(),
})
),
handler: async (ctx, args) => {
const results = [];
for (const id of args.ids) {
const doc = await ctx.db.get(id);
if (doc && doc.published) {
results.push({
_id: doc._id,
slug: doc.slug,
title: doc.title,
content: doc.content,
});
}
}
return results;
},
});