Files
did-it/crypto/secp256k1/public.go
2025-08-05 16:22:16 +02:00

221 lines
5.9 KiB
Go

package secp256k1
import (
"crypto/x509/pkix"
"encoding/asn1"
"encoding/pem"
"fmt"
"github.com/decred/dcrd/dcrec/secp256k1/v4"
"github.com/decred/dcrd/dcrec/secp256k1/v4/ecdsa"
"github.com/ucan-wg/go-varsig"
"github.com/MetaMask/go-did-it/crypto"
helpers "github.com/MetaMask/go-did-it/crypto/internal"
)
var _ crypto.PublicKeySigningBytes = &PublicKey{}
var _ crypto.PublicKeySigningASN1 = &PublicKey{}
type PublicKey struct {
k *secp256k1.PublicKey
}
// PublicKeyFromBytes converts a serialized public key to a PublicKey.
// This compact serialization format is the raw key material, without metadata or structure.
// It errors if the slice is not the right size.
func PublicKeyFromBytes(b []byte) (*PublicKey, error) {
pub, err := secp256k1.ParsePubKey(b)
if err != nil {
return nil, err
}
return &PublicKey{k: pub}, nil
}
// PublicKeyFromXY converts x and y coordinates into a PublicKey.
func PublicKeyFromXY(x, y []byte) (*PublicKey, error) {
var xf, yf secp256k1.FieldVal
if xf.SetByteSlice(x) {
return nil, fmt.Errorf("invalid secp255k1 public key")
}
if yf.SetByteSlice(y) {
return nil, fmt.Errorf("invalid secp255k1 public key")
}
return &PublicKey{k: secp256k1.NewPublicKey(&xf, &yf)}, nil
}
// PublicKeyFromPublicKeyMultibase decodes the public key from its Multibase form
func PublicKeyFromPublicKeyMultibase(multibase string) (*PublicKey, error) {
code, bytes, err := helpers.PublicKeyMultibaseDecode(multibase)
if err != nil {
return nil, err
}
if code != MultibaseCode {
return nil, fmt.Errorf("invalid code")
}
return PublicKeyFromBytes(bytes)
}
// PublicKeyFromX509DER decodes an X.509 DER (binary) encoded public key.
func PublicKeyFromX509DER(bytes []byte) (*PublicKey, error) {
// Parse the X.509 SubjectPublicKeyInfo structure
var spki struct {
Algorithm pkix.AlgorithmIdentifier
SubjectPublicKey asn1.BitString
}
if _, err := asn1.Unmarshal(bytes, &spki); err != nil {
return nil, fmt.Errorf("failed to parse X.509 SubjectPublicKeyInfo: %w", err)
}
// Check if this is an Elliptic curve public key (OID: 1.2.840.10045.2.1)
if !spki.Algorithm.Algorithm.Equal(oidPublicKeyECDSA) {
return nil, fmt.Errorf("not an Elliptic curve public key, got OID: %v", spki.Algorithm.Algorithm)
}
// Extract the curve OID from parameters
var namedCurveOID asn1.ObjectIdentifier
if _, err := asn1.Unmarshal(spki.Algorithm.Parameters.FullBytes, &namedCurveOID); err != nil {
return nil, fmt.Errorf("failed to parse curve parameters: %w", err)
}
// Check if this is secp256k1 (OID: 1.3.132.0.10)
if !namedCurveOID.Equal(oidSecp256k1) {
return nil, fmt.Errorf("unsupported curve, expected secp256k1 (1.3.132.0.10), got: %v", namedCurveOID)
}
pubKey, err := secp256k1.ParsePubKey(spki.SubjectPublicKey.Bytes)
if err != nil {
return nil, fmt.Errorf("failed to parse secp256k1 public key: %w", err)
}
return &PublicKey{k: pubKey}, nil
}
// PublicKeyFromX509PEM decodes an X.509 PEM (string) encoded public key.
func PublicKeyFromX509PEM(str string) (*PublicKey, error) {
block, _ := pem.Decode([]byte(str))
if block == nil {
return nil, fmt.Errorf("failed to decode PEM block")
}
if block.Type != pemPubBlockType {
return nil, fmt.Errorf("incorrect PEM block type")
}
return PublicKeyFromX509DER(block.Bytes)
}
func (p *PublicKey) XBytes() []byte {
// fixed size buffer that can get allocated on the caller's stack after inlining.
var buf [coordinateSize]byte
p.k.X().FillBytes(buf[:])
return buf[:]
}
func (p *PublicKey) YBytes() []byte {
// fixed size buffer that can get allocated on the caller's stack after inlining.
var buf [coordinateSize]byte
p.k.Y().FillBytes(buf[:])
return buf[:]
}
func (p *PublicKey) Equal(other crypto.PublicKey) bool {
if other, ok := other.(*PublicKey); ok {
return p.k.IsEqual(other.k)
}
return false
}
func (p *PublicKey) ToBytes() []byte {
// 33-byte compressed format
return p.k.SerializeCompressed()
}
func (p *PublicKey) ToPublicKeyMultibase() string {
return helpers.PublicKeyMultibaseEncode(MultibaseCode, p.k.SerializeCompressed())
}
func (p *PublicKey) ToX509DER() []byte {
pubKeyBytes := p.k.SerializeUncompressed()
// Create the X.509 SubjectPublicKeyInfo structure
spki := struct {
Algorithm pkix.AlgorithmIdentifier
SubjectPublicKey asn1.BitString
}{
Algorithm: pkix.AlgorithmIdentifier{
Algorithm: oidPublicKeyECDSA,
Parameters: asn1.RawValue{
FullBytes: must(asn1.Marshal(oidSecp256k1)),
},
},
SubjectPublicKey: asn1.BitString{
Bytes: pubKeyBytes,
BitLength: len(pubKeyBytes) * 8,
},
}
der, err := asn1.Marshal(spki)
if err != nil {
panic(err) // This should not happen with valid key data
}
return der
}
func (p *PublicKey) ToX509PEM() string {
der := p.ToX509DER()
return string(pem.EncodeToMemory(&pem.Block{
Type: pemPubBlockType,
Bytes: der,
}))
}
// The default signing hash is SHA-256.
func (p *PublicKey) VerifyBytes(message, signature []byte, opts ...crypto.SigningOption) bool {
if len(signature) != SignatureBytesSize {
return false
}
params := crypto.CollectSigningOptions(opts)
if !params.VarsigMatch(varsig.AlgorithmECDSA, uint64(varsig.CurveSecp256k1), 0) {
return false
}
hasher := params.HashOrDefault(crypto.SHA256).New()
hasher.Write(message)
hash := hasher.Sum(nil)
var r, s secp256k1.ModNScalar
r.SetByteSlice(signature[:32])
s.SetByteSlice(signature[32:])
return ecdsa.NewSignature(&r, &s).Verify(hash, p.k)
}
// The default signing hash is SHA-256.
func (p *PublicKey) VerifyASN1(message, signature []byte, opts ...crypto.SigningOption) bool {
params := crypto.CollectSigningOptions(opts)
if !params.VarsigMatch(varsig.AlgorithmECDSA, uint64(varsig.CurveSecp256k1), 0) {
return false
}
hasher := params.HashOrDefault(crypto.SHA256).New()
hasher.Write(message)
hash := hasher.Sum(nil)
sig, err := ecdsa.ParseDERSignature(signature)
if err != nil {
return false
}
return sig.Verify(hash, p.k)
}
func must[T any](v T, err error) T {
if err != nil {
panic(err)
}
return v
}